Technische Hochschule Köln

Fakultät für Wirtschafts- und Rechtswissenschaften

Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de

Übungen zur Vorlesung QM I (Wirtschaftsmathematik)

Gleichungssysteme und Gaußalgorithmus

Aufgabe 2.1

Für ein Gut ist die folgende (lineare) Preis-Absatz Funktion bekannt:

$$x(p) = a - b \cdot p$$

wobei x die abgesetzten Mengeneinheiten und p den Verkaufspreis (in GE) pro ME bezeichnen.

a) Für die Absatzmengen und die Preise sind folgende Kombinationen bekannt:

$$\begin{array}{c|cc}
p & x \\
\hline
5 & 90 \\
10 & 80 \\
15 & 70
\end{array}$$

Bestimmen Sie aus diesen Angaben die Koeffizienten a und b.

b) Die Sättigungsgrenze liegt bei 2 000 ME; d.h. mehr als 2 000 ME können nicht abgesetzt werden. Ferner werden 1 000 ME des Guts abgesetzt, falls der Verkaufspreis 25 GE beträgt. Bestimmen Sie aus diesen Angaben die Koeffizienten a und b.

Aufgabe 2.2

Bestimmen Sie mit Hilfe des Gaußalgorithmus die Lösungsmengen der folgenden linearen Gleichungssysteme:

a)
$$x_1 + 6x_2 = -3$$
$$3x_1 - 3x_3 + 4x_4 = 31$$
$$2x_1 + x_2 + x_4 = 12$$
$$6x_1 + 3x_4 = 39$$

Lösungsmenge
$$\mathbb{L} = \left\{ \begin{pmatrix} 3 \\ -1 \\ 2 \\ 7 \end{pmatrix} \right\}$$

b)
$$3x + 5y - 22z = 0$$

 $x + y + z = 0$
 $x + 3y - 42z = 0$

Lösungsmenge
$$\mathbb{L} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

c)
$$2x_1 - x_2 + 4x_3 = 8$$

 $3x_2 - 2x_3 = 6$
 $x_1 + 4x_2 - x_3 = 12$

Lösungsmenge
$$\mathbb{L} = \{ \}$$

d)
$$4x_1 + 8x_3 + 16x_4 = 2$$
$$x_1 + 2x_2 + 10x_3 + 8x_4 = 4$$
$$x_1 + 6x_3 + 5x_4 = 4$$
$$2x_2 + 10x_3 + 7x_4 = 2$$
$$2x_2 + 10x_3 + 12x_4 = 2$$

Lösungsmenge
$$\mathbb{L} = \{ \ \}$$

e)
$$x_1 + 2x_2 + 3x_3 + 4x_4 = 0$$

 $x_1 + x_2 + x_3 + x_4 = 0$
 $x_2 + x_3 + x_4 = 0$
Lösungsmenge $\mathbb{L} = \left\{ \begin{pmatrix} 0 \\ x_4 \\ -2x_4 \\ x_4 \end{pmatrix} ; x_4 \in \mathbb{R} \right\}$

Die ausführlichen Lösungen stehen im Internet.

Aufgabe 2.3

Gegeben sei das folgende Gleichungssystem:

- a) Bestimmen Sie die Lösungsmenge des obigen Gleichungssystems.
- b) Geben Sie die Lösungsmenge an, die alle nichtnegativen Lösungen enthält.
- c) Wie lautet die Lösungsmenge, wenn in der vierten Gleichung die Zahl 34 statt der Zahl 33 steht?

Technische Hochschule Köln

Fakultät für Wirtschafts- und Rechtswissenschaften

Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de

Übungen zur Vorlesung Wirtschaftsmathematik

Gleichungssysteme und Gaußalgorithmus

Aufgabe 2.4

Ein Unternehmen stellt in der ersten Produktionsstufe aus zwei Rohmaterialen R_1 und R_2 drei Zwischenprodukte Z_1, Z_2, Z_3 her. In der zweiten Produktionsphase werden aus den drei Zwischenprodukten drei Endprodukte P_1, P_2, P_3 gefertigt. Der Verbrauch an Rohmaterial pro Mengeneinheit der Zwischenprodukte ist durch die Produktionsmatrix A gegeben, der Verbrauch an Zwischenprodukten pro Mengeneinheit der Endprodukte durch die Produktionsmatrix B:

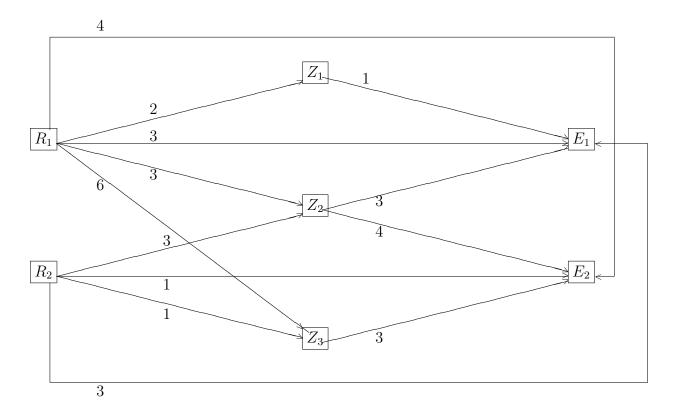
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 2 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- a) Von den Endprodukten sollen 100 ME von P_1 , 200 ME von P_2 und 300 ME von P_3 produziert werden. Wie viele ME der Rohmaterialien werden dazu benötigt? Wie viele ME der Zwischenprodukte entstehen dabei?
- b) Eine ME von Rohmaterial R_1 kostet 10 GE und eine ME von R_2 kostet 20 GE.
 - 1. Bestimmen Sie die Rohmaterialkosten für jeweils eine ME der Endprodukte.
 - 2. Die Zwischenprodukte Z_1, Z_3 werden dem Unternehmen für einen Preis von 50 GE pro ME angeboten. Das Zwischenprodukt Z_2 kann für 60 GE pro ME eingekauft werden. Soll das Unternehmen die Zwischenprodukte einkaufen oder selbst produzieren?
- c) Von den Rohmaterialien stehen 2000 ME von R_1 und 1000 ME von R_2 zur Verfügung. Zeigen Sie, dass es kein ökonomisch sinnvolles Produktionsprogramm gibt, wenn das Rohmaterial vollständig verbraucht werden soll.

Aufgabe 2.5

Ein Unternehmen stellt in einem zweistufigen Produktionsplan aus zwei Rohstoffen R_1, R_2 und drei Zwischenprodukten Z_1, Z_2, Z_3 die Endprodukte E_1, E_2 her.

Der Produktionszusammenhang wird durch folgende Materialflussgrafik wiedergegeben:



- a) Es stehen 8 200 ME von Rohstoff R_1 und 4 400 ME von Rohstoff R_2 zur Verfügung. Wie viele ME von E_1 bzw. E_2 können daraus produziert werden?
- b) An Rohmaterial kosten 1 ME von E_1 genau 400 GE und 1 ME von E_2 genau 840 GE. Berechnen Sie daraus die Rohstoffkosten pro ME der Rohmaterialien R_1 und R_2 .

Aufgabe 2.6

In einem Unternehmen bestehen drei Kostenstellen K_1, K_2, K_3 . Sie erbringen Leistungen für die jeweils anderen beiden Kostenstellen sowie für den Absatzmarkt. Die Leistungen

(in
$$LE$$
) für den Absatzmarkt umfassen: $\frac{K_1}{100} \frac{K_2}{200} \frac{K_3}{290}$

Die gegenseitigen Leistungsabgaben (in LE) zwischen den Kostenstellen sind in folgender Tabelle festgehalten:

	empfangende Stelle				
Stelle	K_1	K_2	K_3		
K_1	0	20	30		
K_2	10	0	40		
K_3	50	60	0		

Die Stellen-Primärkosten betragen (in GE): $\frac{K_1}{320} \frac{K_2}{370} \frac{K_3}{1760}$

Bestimmen Sie die innerbetrieblichen Verrechnungspreise.

Lösung zu Aufgabe 2.1

a)
$$x(p) = 100 - 2 \cdot p \; ; p \in [0; 50]$$

b) I
$$2\,000 = a - b \cdot 0 \Leftrightarrow a = 2\,000$$

II $1\,000 = a - b \cdot 25 \Leftrightarrow 1\,000 = 2\,000 - 25b \Leftrightarrow b = 40$
d.h. $x(p) = 2\,000 - 40 \cdot p \; ; p \in [0; 50]$

Lösung zu Aufgabe 2.2 a)

Zeile	x_1	$\frac{33}{x_2}$	$\frac{x_3}{x_3}$	x_4	b	Op.
_						op.
1		6	0	0	-3	
2	3	0	-3	4	31	
3	2	1	0	1	12	
4	6	0	0	3	39	
(5)	1	6	0	0	-3	1
6	0	-18	-3	4	40	$2 - 3 \cdot 1$
7	0	-11	0	1	18	$3-2\cdot 1$
8	0	-36	0	3	57	$(4)-6\cdot(1)$
9	1	6	0	0	-3	5
10	0	-18	-3	4	40	6
(11)	0	0	33	-26	-116	18 · ⑦ -11 · ⑥
12	0	0	6	-5	-23	$8-2\cdot 6$
13	1	6	0	0	-3	9
14	0	-18	-3	4	40	10
15	0	0	6	-5	-23	12
16	0	0	0	3	21	$2 \cdot 1 -11 \cdot 1 $

$$3x_4 = 21 \Leftrightarrow x_4 = 7$$

(15)
$$6x_3 - 5 \cdot 7 = -23 \Leftrightarrow x_3 = 2$$

$$(4) \qquad -18x_2 - 3 \cdot 2 + 4 \cdot 7 = 40 \Leftrightarrow x_2 = -1$$

(3)
$$x_1 + 6 \cdot (-1) = -3 \Leftrightarrow x_1 = 3$$

$$\mathbb{L} = \left\{ \begin{pmatrix} 3\\ -1\\ 2\\ 7 \end{pmatrix} \right\}$$

Lösung zu Aufgabe 2.2 b)

				/	
Zeile	x	y	z	b	Operation
1	3	5	-22	0	
2	1	1	1	0	
3	$\overline{1}$	3	-42	0	
4	1	1	1	0	2
5	0	$\boxed{2}$	-25	0	$(1)-3\cdot(2)$
6	0	2	-43	0	3-2
7	1	1	1	0	4
8	0	2	-25	0	5
9	0	0	-18	0	6-5

$$9 -18z = 0 \Leftrightarrow z = 0$$

$$(8) 2y - 25 \cdot 0 = 0 \Leftrightarrow y = 0$$

$$(7) \quad x+1\cdot 0+1\cdot 0=0 \Leftrightarrow x=0$$

$$\mathbb{L} = \left\{ \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \right\}$$

Lösung zu Aufgabe 2.2 c)

2000.09		$\omega_{j}g\omega$	- ,-,,-	9	
Zeile	x_1	x_2	x_3	b	Operation
1	2	-1	4	8	
2	0	3	-2	6	
3	$\boxed{1}$	4	-1	12	
4	1	4	-1	12	3
5	0	3	-2	6	2
6	0	-9	6	-16	$1-2\cdot 3$
7	1	4	-1	12	4
8	0	3	-2	6	5
9	0	0	0	2	$6+3 \cdot 5$

(9)
$$0 \cdot x_3 = 2 \, 4$$
; d.h. $\mathbb{L} = \emptyset$

Lösung zu Aufgabe 2.2 d)

Zeile	x_1	$\frac{x_2}{x_2}$	$\frac{c z.z}{x_3}$	x_4	b	Operation
1	4	0	8	16	2	-
	1	2	10	8	4	
3	1	0	6	5	4	
4	0	2	10	7	2	
<u>4</u> <u>5</u>	0	2	10	12	2	
6	1	2	10	8	4	2
7	0	-8	-32	-16	-14	(1) $-4 \cdot (2)$
(7) (8)	0	-2	-4	-3	0	3-2
9	0	$\boxed{2}$	10	7	2	4
9	0	$\overline{2}$	10	12	2	(5)
(1)	1	2	10	8	4	6
12	0	2	10	7	2	9
(13)	0	0	8	12	-6	$7+4 \cdot 9$
14)	0	0	6	4	2	8+9
14 15	0	0	0	5	0	10 -9
16	1	2	10	8	4	(1)
17	0	2	10	7	2	12
16 17 18	0	0	8	12	-6	13
19	0	0	0	-20	26	$4 \cdot (4) - 3 \cdot (3)$
20	0	0	0	5	0	15)
	1	2	10	8	4	16
22	0	2	10	7	2	17
23	0	0	8	12	-6	(18)
21 22 23 24 25	0	0	0	5	0	20
25	0	0	0	0	26	$(19 + 4 \cdot (20))$

 $0 \cdot x_4 = 26 \ 4$; d.h. $\mathbb{L} = \emptyset$

Lösung zu Aufgabe 2.2 e)

Docum		33		/		
Zeile	x_1	x_2	x_3	x_4	b	Op.
1	1	2	3	4	0	
2	1	1	1	1	0	
3	0	1	1	1	0	
4	1	2	3	4	0	1
(5)	0	-1	-2	-3	0	2-1
6	0	1	1	1	0	3
7	1	2	3	4	0	4
8	0	-1	-2	-3	0	5
9	0	0	-1	-2	0	6+5

$$\mathbb{L} = \left\{ \begin{pmatrix} 0 \\ x_4 \\ -2x_4 \\ x_4 \end{pmatrix} ; x_4 \in \mathbb{R} \right\}$$

Lösung zu Aufgabe 2.3 a)

Documy	~ 0 11	Lajgac		α_j		
Zeile	x_1	x_2	x_3	x_4	b	Op.
1	1	-2	3	1	5	
2	1	2	-3	1	7	
3	2	0	3	2	21	
4	4	0	3	4	33	
(5)	1	-2	3	1	5	1
6	0	$\boxed{4}$	-6	0	2	2-1
7	0	$\overline{4}$	-3	0	11	$3-2\cdot 1$
8	0	8	-9	0	13	$4-4\cdot 1$
9	1	-2	3	1	5	5
10	0	4	-6	0	2	6
(11)	0	0	3	0	9	7-6
12	0	0	3	0	9	$8-2\cdot 6$
13	1	-2	3	1	5	9
14	0	4	-6	0	2	10
15	0	0	3	0	9	11)
16	0	0	0	0	0	12 -(1)

(6) Keine Information!

$$3x_3 = 9 \Leftrightarrow x_3 = 3$$

$$4x_2 - 6 \cdot 3 = 2 \Leftrightarrow x_2 = 5$$

$$(3) x_1 - 2 \cdot 5 + 3 \cdot 3 + x_4 = 5 \Leftrightarrow x_1 = 6 - x_4$$

$$\mathbb{L} = \left\{ \begin{pmatrix} 6 - x_4 \\ 5 \\ 3 \\ x_4 \end{pmatrix} ; x_4 \in \mathbb{R} \right\}$$

Lösung zu Aufgabe 2.3 b)

1.
$$x_1 = 6 - x_4 \ge 0 \Leftrightarrow x_4 \le 6$$

2.
$$x_2 = 5 \ge 0$$
 okay

3.
$$x_3 = 3 \ge 0$$
 okay

4.
$$x_4 \ge 0$$

$$\mathbb{L} = \left\{ \begin{pmatrix} 6 - x_4 \\ 5 \\ 3 \\ x_4 \end{pmatrix} ; x_4 \in [0; 6] \right\}$$

Lösung zu Aufgabe 2.3 c)

		75		- /			
Zeile	x_1	x_2	x_3	x_4		b	Op.
1	1	-2	3	1		5	
2	1	2	-3	1		7	
3	2	0	3	2		21	
4	4	0	3	4	ß 3	34	
5	1	-2	3	1		5	1
6	0	$\boxed{4}$	-6	0		2	2-1
7	0	$\overline{4}$	-3	0		11	$3-2\cdot 1$
8	0	8	- 9	0	/ 13	14	$4-4\cdot 1$
9	1	-2	3	1		5	5
10	0	4	-6	0		2	6
(11)	0	0	3	0		9	7-6
12	0	0	3	0	,Ø	10	$8-2\cdot 6$
13	1	-2	3	1		5	9
14	0	4	-6	0		2	10
15	0	0	3	0		9	11)
16	0	0	0	0	Ø,	1	12 -(1)

(16)
$$0 \cdot x_4 = 1$$
 4; d.h. $\mathbb{L} = \emptyset$

Lösung zu Aufgabe 2.4

a) Gesamtbedarf $M = A \cdot B$

$$\begin{array}{c|cccc} & P_1 & P_2 & P_3 \\ \hline R_1 & 9 & 10 & 13 \\ R_2 & 8 & 14 & 18 \\ \end{array}$$

$$M \cdot \begin{bmatrix} 100\\200\\300 \end{bmatrix} = \begin{bmatrix} 6\,800\\9\,000 \end{bmatrix}$$

d.h. es werden $6\,800$ ME von R_1 und $9\,000$ ME von R_2 benötigt.

$$B \cdot \begin{bmatrix} 100 \\ 200 \\ 300 \end{bmatrix} = \begin{bmatrix} 1\,400 \\ 800 \\ 400 \end{bmatrix}$$
d.h. es entstehen 1400 ME von Z_1 , 800 ME von Z_2 und 400 ME von Z_3 .

1. $(10, 20) \cdot M = (250, 380, 490)$

d.h. an Rohmaterial kosten eine ME P_1 250 GE, eine ME P_2 380 GE und eine ME P_3 490 GE.

2. $(10,20) \cdot A = (120,70,60)$

d.h. in Eigenproduktion kosten an Rohmaterial eine ME von Z_1 120 GE, eine ME von Z_2 70 GE und eine ME von Z_3 60 GE

d.h. es ist günstiger die Zwischenprodukte zu kaufen.

c) e_1 =ME von P_1

 $e_2 = ME \text{ von } P_2$

 e_3 =ME von P_3

Gaußalgorithmus

Zeile	x_1	x_2	x_3	b	Operation
1	9	10	13	2 000	
2	8	14	18	1 000	
3	9	10	13	2 000	1
4	0	46	58	-7000	$9 \cdot 2 - 8 \cdot 1$

$$46e_2 + 58e_3 = -7000 \Leftrightarrow e_2 = \frac{-7000}{46} - \frac{58}{46}e_3$$

$$\mathbb{L} = \left\{ \begin{pmatrix} \frac{18000}{46} - \frac{2}{46}e_3\\ \frac{-7000}{46} - \frac{58}{46}e_3\\ e_3 \end{pmatrix}; e_3 \in \mathbb{R} \right\}$$

Ökonomisch sinnvolle Lösungen:

Okonomisch sinnvolle Losungen: I
$$e_1 = \frac{18\,000}{46} - \frac{2}{46}e_3 \ge 0 \Rightarrow e_3 \le 9\,000$$
 II $e_2 = -\frac{7\,000}{46} - \frac{58}{46}e_3 \ge 0 \Rightarrow e_3 \le -\frac{7\,000}{58}$ III $e_3 \ge 0$

Wegen II und III gibt es keine ökonomisch sinnvolle Lösungsmenge.

Lösung zu Aufgabe 2.5

Gesamtbedarf M (in ME) an Rohmaterial für jeweils eine ME der Endprodukte:

$$\begin{array}{c|cccc}
E_1 & E_2 \\
\hline
R_1 & 14 & 34 \\
R_2 & 12 & 16 \\
\end{array}$$

a) Mit dem Gaußalgorithmus wird die Lösung bestimmt.

Zeile	e_1	e_2	r	Operation
1	14	34	8 200	
2	12	16	4400	
3	14	34	8 200	1
4	0	-92	-18400	$7 \cdot \bigcirc -6 \cdot \bigcirc$

$$\boxed{4 \quad -92e_2 = -18400 \Leftrightarrow e_2 = 200}$$

$$3 14e_1 + 34 \cdot 200 = 8200 \Leftrightarrow e_1 = 100$$

Aus dem Vorrat lassen sich 100 ME von E_1 und 200 ME von E_2 herstellen.

b) I
$$14x_1 + 12x_2 = 400$$

II $34x_1 + 16x_2 = 840$

Zeile	x_1	x_2	r	Operation
1	14	12	400	
2	34	16	840	
3	14	12	400	1
4	0	-92	-920	$7 \cdot \bigcirc -17 \cdot \bigcirc$

$$(3) \quad 14x_1 + 12 \cdot 10 = 400 \Leftrightarrow x_1 = 20$$

d.h. eine ME von R_1 kostet 20 GE und eine ME von R_2 kostet 10 GE.

Lösung zu Aufgabe 2.6:

 v_1 =Bewertung in GE für eine in K_1 hergestellte Leistungsmengeneinheit v_2 =Bewertung in GE für eine in K_2 hergestellte Leistungsmengeneinheit v_3 =Bewertung in GE für eine in K_3 hergestellte Leistungsmengeneinheit

Kostengleichgewicht:

I
$$(20 + 30 + 100)v_1 - 10v_2 - 50v_3 = 320$$

II $(10 + 40 + 200)v_2 - 20v_1 - 60v_3 = 370$
III $(50 + 60 + 290)v_3 - 30v_1 - 40v_2 = 1760$

Gaußalgorithmus:

Zeile	v_1	v_2	v_3		Operation
1	150	-10	-50	320	
2	-20	250	-60	370	
3	-30	-40	400	1 760	
4	15	-1	-5	32	①÷10
2	-2	25	-6	37	②÷10
6	$\overline{-3}$	-4	40	176	③÷10
7	-2	25	-6	37	4
8	0	373	-100	619	$2 \cdot 4 + 15 \cdot 5$
9	0	-83	98	241	$2 \cdot 6 - 3 \cdot 5$
10	-2	25	-6	37	7
(1)	0	-83	98	241	9
12	0	0	28254	141270	373 · 9 +83 · 8

$$v_1 = \frac{37 + 30 - 75}{-2} = 4$$

Die innerbetrieblichen Verrechnungspreise betragen v_1 =4 GE, v_2 = 3 GE und v_3 =5 GE. d.h. es kostet 4 GE eine Leistungsmengeneinheit in K_1 herzustellen, 3 GE eine Leistungsmengeneinheit in K_2 herzustellen und 5 GE eine Leistungsmengeneinheit in K_3 herzustellen.

Technische Hochschule Köln

Fakultät für Wirtschafts- und Rechtswissenschaften

Prof. Dr. Arrenberg

Raum 221, Tel. 3914

jutta.arrenberg@th-koeln.de

Vorlesung QM I (Wirtschaftsmathematik)

Was ist falsch?

In den nachfolgenden alten Klausuraufgaben habe ich Lösungen mit typischen Fehlern aufgeschrieben. Versuchen Sie bitte, diese Fehler zu finden.

Aufgabe 2a (08.07.2011)

Gegeben sind die folgenden Matrizen:

$$A = \begin{bmatrix} 4 & 5 \\ 8 & 3 \\ 6 & 7 \end{bmatrix}; \quad B = \begin{bmatrix} 10 & 5 \\ 8 & 9 \end{bmatrix}; \quad C = \begin{bmatrix} -2 \\ 4 \end{bmatrix}; \quad D = \begin{bmatrix} 3 \\ 1 \\ 6 \end{bmatrix}$$

Berechnen Sie:

1. $A \cdot B$

2.
$$A \cdot C - 3 \cdot D$$

 $Falsche\ L\"{o}sung:$

1.
$$A \cdot B = \begin{bmatrix} 40 & 65 \\ 104 & 67 \\ 116 & 93 \end{bmatrix}$$

$$2. A \cdot C - 3 \cdot D = \begin{bmatrix} 12 \\ -4 \\ 16 \end{bmatrix} - \begin{bmatrix} 9 \\ 3 \\ 18 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Aufgabe 1c (31.01.2013)

A,B,C seien 4×4 -Matrizen und E die 4×4 -Einheitsmatrix. Reduzieren Sie die nachfolgenden Terme so, dass die Anzahl der erforderlichen Matrizenmultiplikationen minimal ist:

1

1.
$$A(2B+C)-3AC$$

2.
$$3(AB + 2CA) - 6AC$$

$$3. \ A(B+E) - E(A-B)B$$

Falsche Lösung:

_ Z

1.
$$A(2B+C) - 3AC = 2AB + AC - 3AC = 2AB$$

2.
$$3(AB + 2CA) - 6AC = 3AB + 6AC - 6AC = 3AB$$

3.
$$A(B+E) - E(A-B)B = AB + A - (A-B)B = AB + A - AB + BB = A + BB$$

Aufgabe 1a (03.07.2013)

Mit einem mehrstufigen Produktionsprozess stellt ein Unternehmen aus den Rohstoffen R_1 , R_2 und R_3 die Endprodukte E_1 , E_2 und E_3 her. Der Gesamtbedarf (in ME) pro Einheit Endprodukt ist jeweils:

	E_1	E_2	E_3
R_1	1	1	2
R_2	2	3	0
R_3	1	3	1

Das Unternehmen hat 22 Einheiten R_1 , 14 Einheiten R_2 und 18 Einheiten R_3 auf Lager. Wie viele Einheiten der verschiedenen Endprodukte lassen sich daraus produzieren, wenn die Rohstoffe komplett verbraucht werden sollen?

Falsche Lösung:

Für e_1 =ME von E_1 , e_2 =ME von E_2 , e_3 =ME von E_3 ergibt sich mit dem Gaußalgorithmus:

Zeile	e_1	e_2	e_3		Operation
1	1	1	2	22	
2	2	3	0	14	
3	1	3	1	18	
4	1	1	2	22	1
5	0	$\boxed{2}$	-1	-4	3-1
6	0	1	-4	-30	$2-2\cdot 1$
7	1	1	2	22	4
8	0	2	-1	-4	5
9	0	0	-6	-52	6-4
	\sim				

falsche

Aus Zeile 9 ergibt sich: $-6e_3 = -52 \iff e_3 = 8\frac{2}{3}$

Einsetzen in Zeile 8 ergibt: $2e_2 - 8\frac{2}{3} = -4 \iff e_2 = 2\frac{1}{3}$.

Einsetzen in Zeile 7 ergibt: $e_1 + 2\frac{1}{3} + 2 \cdot 8\frac{2}{3} = 22 \iff e_1 = 2\frac{1}{3}$.

Von E_1 können $2\frac{1}{3}$ Einheiten, von E_2 können $2\frac{1}{3}$ Einheiten und von E_3 können $8\frac{2}{3}$ Einheiten hergestellt werden.

Gaußalgorithmus

Zeile	$\overline{x_1}$	x_2	x_3	\boldsymbol{b}	Op.
1					
2					
3					
4					
5					
6					
7					
8					
9					

$${\rm I\!\!L}=\{\left(\begin{array}{c} \\ \end{array} \right)\}$$

Gaußalgorithmus

Zeile	$ x_1 $	x_2	x_3	x_4	\boldsymbol{b}	Op.
1						
_						
3 4						
4						
5						
5 6 7						
7						
8						
9 10 11						
11						
12						
13						
14						
(15)						
16						

$${\rm I\!\!L}=\{\left(\begin{array}{c} \\ \end{array} \right)\}$$